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1 Uniform Testing

Consider C being the set of all distributions on [n], and let P be the singleton set containing
the uniform distribution on [n].
Given i.i.d. samples from a distribution p, we aim to test:

p ∈ P (i.e., P = Unif[n]) versus p is ε-far from Unif[n]

in TV-distance with probability ≥ 2
3 .

Goal: Minimize time and query sample complexity(m).

Remark. In this lecture, we only focus on the constant probability regime. The high
probability regime is much more complicated.

Most modern and best-known results on uniformity testing: Gupta and Price (2022).

2 Warm Up (Special Case)

We aim to distinguish between the distributions Unif[2n] and Unif(A), where:
|A| = n, and A ⊆ [2n] is chosen adversarially.

Note that for any particular A:

dTV (Unif[2n],Unif(A)) =
1

2

• **Idea**: This involves a collision (birthday paradox) bound.

• **Birthday Paradox** refers to the counter intuitive fact that a group of 23 people
have a 50 percent chance of sharing a birthday. For more information you can visit
this Wikipedia article.

Figure 1: Birthday Problem
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https://proceedings.mlr.press/v178/gupta22a/gupta22a.pdf
https://en.wikipedia.org/wiki/Birthday_problem


Consider a set S of size k, and suppose we draw m samples from Unif(S). Then, the
probability of not seeing a collision is:

P(no collision) =

m∏
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We want to also lower bound the probability above. However, the reverse of our favorite

inequality is clearly not true. However, 1 − x ≥ e−1.01x for a sufficiently small positive
x. Assuming m is not too big relative to k and k is very large, then each 1 − i−1

k in the
product will be sufficiently small, and hence we can apply the latter inequality. Therefore,
for m� k and k � 1,
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Taking m = O(

√
n) samples creates a constant gap in the probability of observing a

collision. Thus, by repeating O(1) trials and using Chebyshev’s inequality or Hoeffdings
bound, we can estimate the collision probability accurately enough to distinguish between
the two scenarios.

—
Summary of Results:

• **Uniformity Testing in General**: Requires O
(√

n
ε2

)
samples.

• **Collision Tester**: Indeed requires only O
(√

n
ε2

)
samples.

• **Note**: O
(√

n
ε2

)
sample bound for the collision tester needs far harder analysis, so

today we will show a weaker O
(√

n
ε4

)
sample bound instead.

Fact 11.1.

1. P (x = y) =
∑

i p
2
i = ||p||22

2. ||p− Un||22 =
∑

(pi − 1
n)2 =

∑
(p2i −

2pi
n + 1

n2 ) =
(∑

p2i
)
− 1

n (Un = Uniform Dist.)

||p− Un||22 ≥ 0⇒ ||p||22 = 1
n iff p = Un
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3. dTV (p1, Un) = 1
2 ||p− Un||1 ≤

√
n
2 ||p− Un||2

||p− Un||1 =
∑
|pi − 1

n | =
∑
|pi − 1

n | · 1
(cauchy schwartz)

≤
√∑

|pi − 1
n |2 · n =

√
n
√
||p− Un||22

Corollary 11.2.

If p is ε-far from Un, then

‖p‖22 ≥
1 + 4ε2

n

ε ≤ dTV (p, Un) ≤
√
n

2
||p− Un||2 =

√
n

2

√
||p||22 −

1

n

⇒ 2ε

n
≤
√
||p||22 −

1

n

Question: Using 1+4ε2

n gap how do we estimate‖p‖22 to good accuracy using O(
√
n

ε4
) samples?

Algorithm 11.3

1. Take m samples from p.

2. Compute Yij = 1{xi=yj}, Compute C =
∑

i<j
Yij

(m2 )
.

3. Accept if C ≤ 1+ε2

n .

Note: We want to show C is concentrated around the expectation. However, C is not a
sum of independent terms, so we will bound Var(C) and apply Chebyshevs inequality.

Theorem 11.4.
Alg 11.3 on input O(

√
n

ε4
) samples, tests uniformity (vs ε-far) with probability ≥ 2

3
Proof
We know that EC = ‖p‖22, now need to compute Var(C) = E(C2)− (E(C))2.
**Intuition**: In the uniform case, the test statistic will be centered around the expectation
1/n. In any other case we know that the collision statistic C will be centered around at least
1+4ε2

n . We need to control the overlap between these two collision-statistic distributions. In

the non-uniform case, if the mean of the collision statistic is close to 1+4ε2

n we can only
afford a small variance for it, to separate it from the uniform case. If the mean is much
larger than 1+4ε2

n though, then we can afford a larger variance.
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E(C2) =
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Therefore,

Var(C) ≤
(
m

2

)−2
‖p‖−2 + O

(
‖p‖33
m

)
Then,

P
(∣∣∣C − ‖p‖22∣∣∣ > Θ(ε2)‖p‖22

)
≤ O

(
Var(C)
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Fact 11.5. ‖p‖a ≥ ‖p‖b for a ≤ b and ‖p‖22 ≥
1
n .

Using this fact, we further deduce that

P
(∣∣∣C − ‖p‖22∣∣∣ > Θ(m2)‖p‖22

)
≤ O

( n

m2ε4
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if n�

√
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If p = Unif[n], with probability ≥ 2
3

C ≤ (1 + 0.1ε2)‖p‖22 =
1 + .1ε2

n

If p is ε-far, with probability ≥ 2
3

C ≥ (1− 0.1ε2)‖p‖22

≥ (1− 0.1ε2)

(
1 + 4ε2

n

)
≥ 1 + 2ε2

n
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