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1 Uniform Testing

Consider C being the set of all distributions on [n], and let P be the singleton set containing
the uniform distribution on [n].
Given i.i.d. samples from a distribution p, we aim to test:

p€P (ie, P =Unifln]) versus p ise-far from Unif]n]
in TV-distance with probability > .

Goal: Minimize time and query sample complexity(m).

Remark. In this lecture, we only focus on the constant probability regime. The high
probability regime is much more complicated.

Most modern and best-known results on uniformity testing: Gupta and Price (2022).

2 Warm Up (Special Case)

We aim to distinguish between the distributions Unif[2n] and Unif(A4), where:
|A| = n, and A C [2n] is chosen adversarially.
Note that for any particular A:

dry (Unif[2n], Unif(A)) = %

e **Idea™*: This involves a collision (birthday paradox) bound.
e **Birthday Paradox** refers to the counter intuitive fact that a group of 23 people

have a 50 percent chance of sharing a birthday. For more information you can visit
this Wikipedia article.
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Figure 1: Birthday Problem


https://proceedings.mlr.press/v178/gupta22a/gupta22a.pdf
https://en.wikipedia.org/wiki/Birthday_problem

Consider a set S of size k, and suppose we draw m samples from Unif(S). Then, the
probability of not seeing a collision is:

P(no collision) = H (1 . ; 1)
i=1
m - 1
sHexp(—Zk ) (142 <e?)
i=1

We want to also lower bound the probability above. However, the reverse of our favorite
inequality is clearly not true. However, 1 — 2 > e 101 for a sufficiently small positive
x. Assuming m is not too big relative to k and k is very large, then each 1 — % in the
product will be sufficiently small, and hence we can apply the latter inequality. Therefore,
for m < k and k> 1,

P(no collision) = H <1 ! ; 1)

i=1
> ﬁex 101t
= 1 p . L

1.01 m(m—1)

Taking m = O(y/n) samples creates a constant gap in the probability of observing a
collision. Thus, by repeating O(1) trials and using Chebyshev’s inequality or Hoeffdings
bound, we can estimate the collision probability accurately enough to distinguish between
the two scenarios.

Summary of Results:

e **Uniformity Testing in General®*: Requires O (g) samples.

NG

e **Collision Tester**: Indeed requires only O (?2) samples.

e **Note™*: O (g) sample bound for the collision tester needs far harder analysis, so

today we will show a weaker O (%) sample bound instead.
Fact 11.1.

1. Plx=y)=Y,0=Ipl}

2. |lp— Un||§ =>.(pi — %)2 = Z(pg - 2771% + #) = (Zp?) - % (U, = Uniform Dist.)

lp—Unl3>0=|pl3=1 iff p=U,



3. drv(p1,Un) = Lp— Unll < lp — Unl|2

1P = Unllt = X Ipi = 5 = X lpi — 51 -1
(cauchy schwartz)

<\ pi— L2 =vny/llp - Unll3

Corollary 11.2.

If p is e-far from U, then
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—= gap how do we estimate||p||5 to good accuracy using O(g) samples?

Question: Using

Algorithm 11.3

1. Take m samples from p.

Yij
<Ii(3)

2. Compute Yi; = 1;,—, 3, Compute C' =}

. 1+ 2
3. Accept if C' < Ta

Note: We want to show C is concentrated around the expectation. However, C is not a
sum of independent terms, so we will bound Var(C') and apply Chebyshevs inequality.

Theorem 11.4.

Alg 11.3 on input O(g) samples, tests uniformity (vs e-far) with probability > %

Proof

We know that EC = ||p|]§, now need to compute Var(C) = E(C?) — (E(C))?.
**Intuition**: In the uniform case, the test statistic will be centered around the expectation

1/n. In any other case we know that the collision statistic C' will be centered around at least

1+4e2
n

the non-uniform case, if the mean of the collision statistic is close to we can only
afford a small UQam'ance for it, to separate it from the uniform case. If the mean is much
larger than % though, then we can afford a larger variance.

. We need to control the overlap between these two collision-statistic distributions. In
144¢€2
n



—2
m
E(C?) = <2> (Z Z Yz'ijz>
1<j (i<g)#(k<l)
m —2 -2 m -2
:<2> Ipll3 + <> E Yij Yk +<2> E Z Yij Y
{z<]<k<l} 3 {i,5,k,1}=4
m -2 m 2
<(3) |p||2+0((2) r|p||3> m ol
(E(C))?
() i () () el
=\2) P2t {, g ) IPlls +
Therefore,
—2 3
m -2 Hp”3
< LEaIE)
var©) < () Il +0<m
Then,

P (| = Ipl| > ©E)IpI3) <0

(V4|| \2>
(i) + (sl

Fact 11.5. ||p||, > |[pll, for a < b and |jp|3 > L.
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Using this fact, we further deduce that

P (o i3] > eemdnlg) < 0 (-5) +0 (25)
ozt)

m2ed me?
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If p = Unifn], with probability > %
1+ .1

C < (1+01%)|pl5 =

If p is e-far, with probability > %
C > (1-0.18%)|lpl};
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