ECS 189A Sublinear Algorithms for Big Data	Fall 2024
Lecture 11: Uniformity testing + Lower bound of O	mega(sqrt(n))
Lecturer: Jasper Lee Se	cribe: Ben Wiesner

1 Uniform Testing

Consider C being the set of all distributions on [n], and let \mathcal{P} be the singleton set containing the uniform distribution on [n].

Given i.i.d. samples from a distribution p, we aim to test:

 $p \in \mathcal{P}$ (i.e., $\mathcal{P} = \text{Unif}[n]$) versus p is ε -far from Unif[n]

in TV-distance with probability $\geq \frac{2}{3}$.

Goal: Minimize time and query sample complexity(m).

Remark. In this lecture, we only focus on the constant probability regime. The high probability regime is much more complicated.

Most modern and best-known results on uniformity testing: Gupta and Price (2022).

2 Warm Up (Special Case)

We aim to distinguish between the distributions Unif[2n] and Unif(A), where:

|A| = n, and $A \subseteq [2n]$ is chosen adversarially.

Note that for any particular A:

$$d_{TV}$$
 (Unif[2n], Unif(A)) = $\frac{1}{2}$

- **Idea**: This involves a collision (birthday paradox) bound.
- **Birthday Paradox** refers to the counter intuitive fact that a group of 23 people have a 50 percent chance of sharing a birthday. For more information you can visit this Wikipedia article.

Figure 1: Birthday Problem

Consider a set S of size k, and suppose we draw m samples from Unif(S). Then, the probability of not seeing a collision is:

$$\mathbb{P}(\text{no collision}) = \prod_{i=1}^{m} \left(1 - \frac{i-1}{k}\right)$$
$$\leq \prod_{i=1}^{m} \exp\left(-\frac{i-1}{k}\right) \qquad (1+x \leq e^x)$$
$$= \exp\left(-\frac{1}{k}\sum_{i=1}^{m}(i-1)\right)$$
$$= \exp\left(-\frac{1}{k} \cdot \frac{m(m-1)}{2}\right)$$

We want to also lower bound the probability above. However, the reverse of our favorite inequality is clearly not true. However, $1 - x \ge e^{-1.01x}$ for a sufficiently small positive x. Assuming m is not too big relative to k and k is very large, then each $1 - \frac{i-1}{k}$ in the product will be sufficiently small, and hence we can apply the latter inequality. Therefore, for $m \ll k$ and $k \gg 1$,

$$\mathbb{P}(\text{no collision}) = \prod_{i=1}^{m} \left(1 - \frac{i-1}{k}\right)$$
$$\geq \prod_{i=1}^{m} \exp\left(-1.01\frac{i-1}{k}\right)$$
$$= \exp\left(-\frac{1.01}{k} \cdot \frac{m(m-1)}{2}\right)$$

Taking $m = O(\sqrt{n})$ samples creates a constant gap in the probability of observing a collision. Thus, by repeating O(1) trials and using Chebyshev's inequality or Hoeffdings bound, we can estimate the collision probability accurately enough to distinguish between the two scenarios.

Summary of Results:

- **Uniformity Testing in General**: Requires $O\left(\frac{\sqrt{n}}{\varepsilon^2}\right)$ samples.
- **Collision Tester**: Indeed requires only $O\left(\frac{\sqrt{n}}{\varepsilon^2}\right)$ samples.
- **Note**: $O\left(\frac{\sqrt{n}}{\varepsilon^2}\right)$ sample bound for the collision tester needs far harder analysis, so today we will show a weaker $O\left(\frac{\sqrt{n}}{\varepsilon^4}\right)$ sample bound instead.

Fact 11.1.

1.
$$P(x = y) = \sum_{i} p_i^2 = ||p||_2^2$$

2.
$$||p - U_n||_2^2 = \sum (p_i - \frac{1}{n})^2 = \sum (p_i^2 - \frac{2p_i}{n} + \frac{1}{n^2}) = (\sum p_i^2) - \frac{1}{n}$$
 ($U_n = Uniform \ Dist.$)
 $||p - U_n||_2^2 \ge 0 \Rightarrow ||p||_2^2 = \frac{1}{n} \ iff \ p = U_n$

3.
$$d_{TV}(p_1, U_n) = \frac{1}{2} ||p - U_n||_1 \le \frac{\sqrt{n}}{2} ||p - U_n||_2$$

$$\begin{aligned} ||p - U_n||_1 &= \sum |p_i - \frac{1}{n}| = \sum |p_i - \frac{1}{n}| \cdot 1 \\ (cauchy \ schwartz) \end{aligned}$$

$$\leq \sqrt{\sum |p_i - \frac{1}{n}|^2 \cdot n} = \sqrt{n}\sqrt{||p - U_n||_2^2}$$

Corollary 11.2.

If
$$p$$
 is ε -far from U_n , then

$$\|p\|_2^2 \ge \frac{1+4\varepsilon^2}{n}$$

$$\varepsilon \le d_{TV}(p, U_n) \le \frac{\sqrt{n}}{2} ||p - U_n||_2 = \frac{\sqrt{n}}{2} \sqrt{||p||_2^2 - \frac{1}{n}}$$

$$\Rightarrow \frac{2\varepsilon}{n} \le \sqrt{||p||_2^2 - \frac{1}{n}}$$

Question: Using $\frac{1+4\varepsilon^2}{n}$ gap how do we estimate $\|p\|_2^2$ to good accuracy using $O(\frac{\sqrt{n}}{\varepsilon^4})$ samples?

Algorithm 11.3

- 1. Take m samples from p.
- 2. Compute $Y_{ij} = \mathbb{1}_{\{x_i = y_j\}}$, Compute $C = \sum_{i < j} \frac{Y_{ij}}{\binom{m}{2}}$.
- 3. Accept if $C \leq \frac{1+\varepsilon^2}{n}$.

Note: We want to show C is concentrated around the expectation. However, C is not a sum of independent terms, so we will bound Var(C) and apply Chebyshevs inequality.

Theorem 11.4.

Alg 11.3 on input $O(\frac{\sqrt{n}}{\varepsilon^4})$ samples, tests uniformity (vs ε -far) with probability $\geq \frac{2}{3}$ **Proof**

We know that $\mathbb{E}C = \|p\|_2^2$, now need to compute $\operatorname{Var}(C) = \mathbb{E}(C^2) - (\mathbb{E}(C))^2$.

**Intuition **: In the uniform case, the test statistic will be centered around the expectation 1/n. In any other case we know that the collision statistic C will be centered around at least $\frac{1+4\varepsilon^2}{n}$. We need to control the overlap between these two collision-statistic distributions. In the non-uniform case, if the mean of the collision statistic is close to $\frac{1+4\varepsilon^2}{n}$ we can only afford a small variance for it, to separate it from the uniform case. If the mean is much larger than $\frac{1+4\varepsilon^2}{n}$ though, then we can afford a larger variance.

$$\begin{split} \mathbb{E}(C^2) &= \binom{m}{2}^{-2} \mathbb{E}\left(\sum_{i < j} Y_{ij}^2 + \sum_{(i < j) \neq (k < l)} Y_{ij} Y_{kl}\right) \\ &= \binom{m}{2}^{-2} \|p\|_2^2 + \binom{m}{2}^{-2} \mathbb{E}\left(\sum_{\{i < j < k < l\} = 3} Y_{ij} Y_{jk}\right) + \binom{m}{2}^{-2} \mathbb{E}\left(\sum_{\{i, j, k, l\} = 4} Y_{ij} Y_{kl}\right) \\ &\leq \binom{m}{2}^{-2} \|p\|_2^2 + O\left(\binom{m}{2}^{-2} \binom{m}{3} \|p\|_3^3\right) + \underbrace{\binom{m}{2}^{-2} \binom{m}{2} \binom{m}{2} \|p\|_2^4}_{(\mathbb{E}(C))^2} \\ &= \binom{m}{2}^{-2} \|p\|_2^2 + \binom{m}{2}^{-2} \binom{m}{3} \|p\|_3^3 + (\mathbb{E}(C))^2 \end{split}$$

Therefore,

$$\operatorname{Var}(C) \le {\binom{m}{2}}^{-2} \|p\|^{-2} + O\left(\frac{\|p\|_3^3}{m}\right)$$

Then,

$$\begin{aligned} \mathbb{P}\left(\left|C - \|p\|_{2}^{2}\right| > \Theta(\varepsilon^{2})\|p\|_{2}^{2}\right) &\leq O\left(\frac{\operatorname{Var}(C)}{\varepsilon^{4}\|p\|_{2}^{4}}\right) \\ &\leq O\left(\frac{1}{m^{2}\varepsilon^{4}\|p\|_{2}^{2}}\right) + O\left(\frac{\|p\|_{3}^{3}}{m\varepsilon^{4}\|p\|_{4}^{2}}\right) \end{aligned}$$

Fact 11.5. $||p||_a \ge ||p||_b$ for $a \le b$ and $||p||_2^2 \ge \frac{1}{n}$. Using this fact, we further deduce that

$$\mathbb{P}\left(\left|C - \|p\|_{2}^{2}\right| > \Theta(m^{2})\|p\|_{2}^{2}\right) \leq \underbrace{O\left(\frac{n}{m^{2}\varepsilon^{4}}\right)}_{if \, n \gg \frac{\sqrt{n}}{\varepsilon^{2}}} + \underbrace{O\left(\frac{\sqrt{n}}{m\varepsilon^{4}}\right)}_{if \, m \gg \frac{\sqrt{n}}{\varepsilon^{4}}}$$

If p = Unif[n], with probability $\geq \frac{2}{3}$

$$C \le (1+0.1\varepsilon^2) \|p\|_2^2 = \frac{1+.1\varepsilon^2}{n}$$

If p is ε -far, with probability $\geq \frac{2}{3}$

$$C \ge (1 - 0.1\varepsilon^2) \|p\|_2^2$$
$$\ge (1 - 0.1\varepsilon^2) \left(\frac{1 + 4\varepsilon^2}{n}\right)$$
$$\ge \frac{1 + 2\varepsilon^2}{n}$$